Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Front Biosci (Landmark Ed) ; 29(4): 141, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38682199

ABSTRACT

Pericytes, a specific type of mesenchymal cell that surround the basement membrane of pulmonary venules and capillaries. They are crucial pathological features observed in individuals with the severe lung disease of pulmonary fibrosis (PF). The presence of pericytes leads to inflammation and fibrosis in the lung interstitium and alveolar space due to the release of various cytokines and chemokines. Pericytes also stimulate the proliferation and activation of fibroblasts, thereby promoting the progression of PF. Previous studies examining the mechanism of action of pericytes have primarily focused on cell signal transduction pathways, cell growth and death processes, and the synthesis and breakdown of extracellular matrix (ECM). Notably, the transforming growth factor-ß (TGF-ß) and Wnt signaling pathways have been associated with the action of pericytes in driving the progression of PF. It is therefore clear that pericytes play an essential role in the development of PF, while also offering possible avenues for targeted therapeutic intervention against this condition. The current article provides a comprehensive review on how pericytes contribute to inflammatory responses, as well as their importance for understanding the mechanism of PF. In addition, this review discusses the potential use of pericyte-targeted approaches for the treatment of patients affected by this debilitating lung disease.


Subject(s)
Pericytes , Pulmonary Fibrosis , Pericytes/pathology , Pericytes/metabolism , Humans , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/metabolism , Animals , Transforming Growth Factor beta/metabolism , Signal Transduction , Extracellular Matrix/metabolism , Wnt Signaling Pathway
2.
Cell Death Discov ; 9(1): 447, 2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38071234

ABSTRACT

Pathological tissue remodeling is closely associated with the occurrence and aggravation of various diseases. A Disintegrin And Metalloproteinases (ADAM), as well as A Disintegrin And Metalloproteinase with ThromboSpondin motifs (ADAMTS), belong to zinc-dependent metalloproteinase superfamily, are involved in a range of pathological states, including cancer metastasis, inflammatory disorders, respiratory diseases and cardiovascular diseases. Mounting studies suggest that ADAM and ADAMTS proteases contribute to the development of tissue remodeling in various diseases, mainly through the regulation of cell proliferation, apoptosis, migration and extracellular matrix remodeling. This review focuses on the roles of ADAM and ADAMTS proteinases in diseases with pathological tissue remodeling, with particular emphasis on the molecular mechanisms through which ADAM and ADAMTS proteins mediate tissue remodeling. Some of these reported proteinases have defined protective or contributing roles in indicated diseases, while their underlying regulation is obscure. Future studies are warranted to better understand the catalytic and non-catalytic functions of ADAM and ADAMTS proteins, as well as to evaluate the efficacy of targeting these proteases in pathological tissue remodeling.

3.
Signal Transduct Target Ther ; 8(1): 242, 2023 06 10.
Article in English | MEDLINE | ID: mdl-37301869

ABSTRACT

Repurposing existing drugs to inhibit SARS-CoV-2 infection in airway epithelial cells (AECs) is a quick way to find novel treatments for COVID-19. Computational screening has found dicoumarol (DCM), a natural anticoagulant, to be a potential SARS-CoV-2 inhibitor, but its inhibitory effects and possible working mechanisms remain unknown. Using air-liquid interface culture of primary human AECs, we demonstrated that DCM has potent antiviral activity against the infection of multiple Omicron variants (including BA.1, BQ.1 and XBB.1). Time-of-addition and drug withdrawal assays revealed that early treatment (continuously incubated after viral absorption) of DCM could markedly inhibit Omicron replication in AECs, but DCM did not affect the absorption, exocytosis and spread of viruses or directly eliminate viruses. Mechanistically, we performed single-cell sequencing analysis (a database of 77,969 cells from different airway locations from 10 healthy volunteers) and immunofluorescence staining, and showed that the expression of NAD(P)H quinone oxidoreductase 1 (NQO1), one of the known DCM targets, was predominantly localised in ciliated AECs. We further found that the NQO1 expression level was positively correlated with both the disease severity of COVID-19 patients and virus copy levels in cultured AECs. In addition, DCM treatment downregulated NQO1 expression and disrupted signalling pathways associated with SARS-CoV-2 disease outcomes (e.g., Endocytosis and COVID-19 signalling pathways) in cultured AECs. Collectively, we demonstrated that DCM is an effective post-exposure prophylactic for SARS-CoV-2 infection in the human AECs, and these findings could help physicians formulate novel treatment strategies for COVID-19.


Subject(s)
COVID-19 , Dicumarol , Humans , SARS-CoV-2 , COVID-19/genetics , Epithelium
4.
Respir Res ; 24(1): 118, 2023 Apr 29.
Article in English | MEDLINE | ID: mdl-37120511

ABSTRACT

Increased apoptosis of alveolar epithelial cells is a prominent feature of pulmonary fibrosis. Macrophage efferocytosis, phagocytosis of apoptotic cells by macrophages, is crucial for maintaining tissue homeostasis. Expression of Mer tyrosine kinase (MERTK, an important recognition receptor in efferocytosis) in macrophages is thought to be associated with fibrosis. However, how macrophage MERTK affects pulmonary fibrosis and whether it depends on efferocytosis are not yet clear. Here, we found elevated MERTK expression in lung macrophages from IPF patients and mice with bleomycin-induced pulmonary fibrosis. In vitro experiments showed that macrophages overexpressing MERTK exhibit profibrotic effects and that macrophage efferocytosis abrogates the profibrotic effect of MERTK by downregulating MERTK, forming a negative regulatory loop. In pulmonary fibrosis, this negative regulation is defective, and MERTK mainly exhibits profibrotic effects. Our study reveals a previously unsuspected profibrotic effect of elevated macrophage MERTK in pulmonary fibrosis and defective regulation of efferocytosis function as a result of that elevation, suggesting that targeting MERTK in macrophages may help to attenuate pulmonary fibrosis.


Subject(s)
Pulmonary Fibrosis , Receptor Protein-Tyrosine Kinases , Animals , Mice , Apoptosis , c-Mer Tyrosine Kinase/genetics , c-Mer Tyrosine Kinase/metabolism , Macrophages/metabolism , Phagocytosis , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/metabolism , Receptor Protein-Tyrosine Kinases/genetics
5.
Mol Med ; 29(1): 32, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36918759

ABSTRACT

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a condition that may cause persistent pulmonary damage. The transformation of pericytes into myofibroblasts has been recognized as a key player during IPF progression. This study aimed to investigate the functions of lncRNA growth arrest-specific transcript 5 (GAS5) in myofibroblast transformation during IPF progression. METHODS: We created a mouse model of pulmonary fibrosis (PF) via intratracheal administration of bleomycin. Pericytes were challenged with exogenous transforming growth factor-ß1 (TGF-ß1). To determine the expression of target molecules, we employed quantitative reverse transcription-polymerase chain reaction, Western blotting, and immunohistochemical and immunofluorescence staining. The pathological changes in the lungs were evaluated via H&E and Masson staining. Furthermore, the subcellular distribution of GAS5 was examined using FISH. Dual-luciferase reporter assay, ChIP, RNA pull-down, and RIP experiments were conducted to determine the molecular interaction. RESULTS: GAS5 expression decreased whereas PDGFRα/ß expression increased in the lungs of IPF patients and mice with bleomycin-induced PF. The in vitro overexpression of GAS5 or silencing of PDGFRα/ß inhibited the TGF-ß1-induced differentiation of pericytes to myofibroblasts, as evidenced by the upregulation of pericyte markers NG2 and desmin as well as downregulation of myofibroblast markers α-SMA and collagen I. Further mechanistic analysis revealed that GAS5 recruited KDM5B to promote H3K4me2/3 demethylation, thereby suppressing PDGFRα/ß expression. In addition, KDM5B overexpression inhibited pericyte-myofibroblast transformation and counteracted the promotional effect of GAS5 knockdown on pericyte-myofibroblast transformation. Lung fibrosis in mice was attenuated by GAS5 overexpression but promoted by GAS5 deficiency. CONCLUSION: GAS5 represses pericyte-myofibroblast transformation by inhibiting PDGFRα/ß expression via KDM5B-mediated H3K4me2/3 demethylation in IPF, identifying GAS5 as an intervention target for IPF.


Subject(s)
Idiopathic Pulmonary Fibrosis , RNA, Long Noncoding , Animals , Mice , Bleomycin/adverse effects , Demethylation , DNA-Binding Proteins/metabolism , Fibroblasts/metabolism , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/metabolism , Jumonji Domain-Containing Histone Demethylases/metabolism , Lung , Mice, Inbred C57BL , Myofibroblasts/metabolism , Pericytes/metabolism , Pericytes/pathology , Receptor, Platelet-Derived Growth Factor alpha/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Transforming Growth Factor beta1/metabolism
7.
Front Immunol ; 13: 997138, 2022.
Article in English | MEDLINE | ID: mdl-36211385

ABSTRACT

Background: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and fatal fibrotic pulmonary disease with unknow etiology. Owing to lack of reliable prognostic biomarkers and effective treatment measures, patients with IPF usually exhibit poor prognosis. The aim of this study is to establish a risk score prognostic model for predicting the prognosis of patients with IPF based on autophagy-related genes. Methods: The GSE70866 dataset was obtained from the gene expression omnibus (GEO) database. The autophagy-related genes were collected from the Molecular Signatures Database (MSigDB). Gene enrichment analysis for differentially expressed genes (DEGs) was performed to explore the function of DEGs. Univariate, least absolute shrinkage and selection operator (LASSO), as well as multivariate Cox regression analyses were conducted to identify a multi-gene prognostic model. Receiver operating characteristic (ROC) curve was applied to assess the prediction accuracy of the model. The expression of genes screened from the prognostic model was validated in clinical samples and human lung fibroblasts by qPCR and western blot assays. Results: Among the 514 autophagy-related genes, a total of 165 genes were identified as DEGs. These DEGs were enriched in autophagy-related processes and pathways. Based on the univariate, LASSO, and multivariate Cox regression analyses, two genes (MET and SH3BP4) were included for establishing the risk score prognostic model. According to the median value of the risk score, patients with IPF were stratified into high-risk and low-risk groups. Patients in high-risk group had shorter overall survival (OS) than low-risk group in both training and test cohorts. Multivariate regression analysis indicated that prognostic model can act as an independent prognostic indicator for IPF. ROC curve analysis confirmed the reliable predictive value of prognostic model. In the validation experiments, upregulated MET expression and downregulated SH3BP4 expression were observed in IPF lung tissues and TGF-ß1-activated human lung fibroblasts, which is consistent with results from microarray data analysis. Conclusion: These findings indicated that the risk score prognostic model based on two autophagy-related genes can effectively predict the prognosis of patients with IPF.


Subject(s)
Idiopathic Pulmonary Fibrosis , Adaptor Proteins, Signal Transducing/genetics , Autophagy/genetics , Biomarkers , Gene Expression , Humans , Idiopathic Pulmonary Fibrosis/diagnosis , Idiopathic Pulmonary Fibrosis/genetics , Prognosis , Transforming Growth Factor beta1/genetics
9.
iScience ; 25(3): 103967, 2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35224468

ABSTRACT

The outbreak of Coronavirus disease 2019 (COVID-19) throughout the world has caused millions of death, while the dynamics of host responses and the underlying regulation mechanisms during SARS-CoV-2 infection are not well depicted. Lung tissues from a mouse model sensitized to SARS-CoV-2 infection were serially collected at different time points for evaluation of transcriptome, proteome, and phosphoproteome. We showed the ebb and flow of several host responses in the lung across the viral infection. The signaling pathways and kinases regulating networks were alternated at different phases of infection. This multiplex evaluation also revealed that many kinases of the CDK and MAPK family were interactive and served as functional hubs in mediating the signal transduction during SARS-CoV-2 infection. Our study not only revealed the dynamics of lung pathophysiology and their underlying molecular mechanisms during SARS-CoV-2 infection, but also highlighted some molecules and signaling pathways that might guide future investigations on COVID-19 therapies.

10.
Aging Dis ; 13(1): 73-86, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35111363

ABSTRACT

Pulmonary fibrosis, a kind of terminal pathological changes in the lung, is caused by aberrant wound healing, deposition of extracellular matrix (ECM), and eventually replacement of lung parenchyma by ECM. Pulmonary fibrosis induced by acute lung injury and some diseases is reversible under treatment. While idiopathic pulmonary fibrosis is persistent and irreversible even after treatment. Currently, the pathogenesis of irreversible pulmonary fibrosis is not fully elucidated. The known factors associated with the development of irreversible fibrosis include apoptosis resistance of (myo)fibroblasts, dysfunction of pulmonary vessel, cell mitochondria and autophagy, aberrant epithelia hyperplasia and lipid metabolism disorder. In this review, other than a brief introduction of reversible pulmonary fibrosis, we focus on the underlying pathogenesis of irreversible pulmonary fibrosis from the above aspects as well as preclinical disease models, and also suggest directions for future studies.

11.
J Transl Med ; 19(1): 496, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34876129

ABSTRACT

Pulmonary fibrosis is the end stage of a broad range of heterogeneous interstitial lung diseases and more than 200 factors contribute to it. In recent years, the relationship between virus infection and pulmonary fibrosis is getting more and more attention, especially after the outbreak of SARS-CoV-2 in 2019, however, the mechanisms underlying the virus-induced pulmonary fibrosis are not fully understood. Here, we review the relationship between pulmonary fibrosis and several viruses such as Human T-cell leukemia virus (HTLV), Human immunodeficiency virus (HIV), Cytomegalovirus (CMV), Epstein-Barr virus (EBV), Murine γ-herpesvirus 68 (MHV-68), Influenza virus, Avian influenza virus, Middle East Respiratory Syndrome (MERS)-CoV, Severe acute respiratory syndrome (SARS)-CoV and SARS-CoV-2 as well as the mechanisms underlying the virus infection induced pulmonary fibrosis. This may shed new light on the potential targets for anti-fibrotic therapy to treat pulmonary fibrosis induced by viruses including SARS-CoV-2.


Subject(s)
COVID-19 , Epstein-Barr Virus Infections , Pulmonary Fibrosis , Severe acute respiratory syndrome-related coronavirus , Virus Diseases , Animals , Herpesvirus 4, Human , Humans , Mice , Pulmonary Fibrosis/etiology , SARS-CoV-2
12.
Cells ; 10(11)2021 11 17.
Article in English | MEDLINE | ID: mdl-34831433

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal lung disease of unknown etiology. Immune disorders play an important role in IPF pathogenesis. Here, we show that Th9 cells differentiate and activate in the lung tissue of patients with IPF and bleomycin (BLM)-induced lung fibrosis mice. Moreover, we found that Th9 cells promote pulmonary fibrosis in two ways. On the one hand, Th9 cells promote fibroblast differentiation, activation, and collagen secretion by secreting IL-9. On the other hand, they promote differentiation of Th0 cells into Th2 cells by secreting IL-4. Th9 cells and Th2 cells can promote each other, accelerating the Th1/Th2 imbalance and eventually forming a positive feedback of pulmonary fibrosis. In addition, we found that neutralizing IL-9 in both preventive and therapeutic settings ameliorates bleomycin-induced pulmonary fibrosis. Furthermore, we identified several critical signaling pathways involved in the effect of neutralizing IL-9 on pulmonary fibrosis by proteomics study. From an immunological perspective, we elucidated the novel role and underlying mechanism of Th9 cells in pulmonary fibrosis. Our study suggested that Th9-based immunotherapy may be employed as a treatment strategy for IPF.


Subject(s)
Idiopathic Pulmonary Fibrosis/immunology , T-Lymphocytes, Helper-Inducer/immunology , Animals , Antibodies, Neutralizing/metabolism , Bleomycin , Case-Control Studies , Cell Differentiation , Cell Proliferation , Collagen/metabolism , Female , Fibroblasts/pathology , Humans , Idiopathic Pulmonary Fibrosis/pathology , Interleukin-9/metabolism , Leukocytes, Mononuclear/metabolism , Lung/immunology , Lung/pathology , Lymphocyte Activation/immunology , Male , Middle Aged , Proteomics , Signal Transduction
13.
Front Immunol ; 12: 701443, 2021.
Article in English | MEDLINE | ID: mdl-34650550

ABSTRACT

The airway mucus barrier is a primary defensive layer at the airway surface. Mucins are the major structural components of airway mucus that protect the respiratory tract. Respiratory viruses invade human airways and often induce abnormal mucin overproduction and airway mucus secretion, leading to airway obstruction and disease. The mechanism underlying the virus-induced abnormal airway mucus secretion has not been fully studied so far. Understanding the mechanisms by which viruses induce airway mucus hypersecretion may open new avenues to treatment. In this article, we elaborate the clinical and experimental evidence that respiratory viruses cause abnormal airway mucus secretion, review the underlying mechanisms, and also discuss the current research advance as well as potential strategies to treat the abnormal airway mucus secretion caused by SARS-CoV-2.


Subject(s)
Mucus/metabolism , Virus Diseases/metabolism , Animals , Humans , Respiratory System/metabolism
14.
Cell Death Discov ; 7(1): 52, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33723241

ABSTRACT

Interleukins, a group of cytokines participating in inflammation and immune response, are proved to be involved in the formation and development of pulmonary fibrosis. In this article, we reviewed the relationship between interleukins and pulmonary fibrosis from the clinical, animal, as well as cellular levels, and discussed the underlying mechanisms in vivo and in vitro. Despite the effects of interleukin-targeted treatment on experimental pulmonary fibrosis, clinical applications are lacking and unsatisfactory. We conclude that intervening in one type of interleukins with similar functions in IPF may not be enough to stop the development of fibrosis as it involves a complex network of regulation mechanisms. Intervening interleukins combined with other existing therapy or targeting interleukins affecting multiple cells/with different functions at the same time may be one of the future directions. Furthermore, the intervention time is critical as some interleukins play different roles at different stages. Further elucidation on these aspects would provide new perspectives on both the pathogenesis mechanism, as well as the therapeutic strategy and drug development.

15.
Front Cell Dev Biol ; 9: 810842, 2021.
Article in English | MEDLINE | ID: mdl-35174169

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease attributed to the complex interplay of genetic and environmental risks. The muco-ciliary clearance (MCC) system plays a critical role in maintaining the conduit for air to and from the alveoli, but it remains poorly understood whether the MCC abnormalities in conducting airway are involved in IPF pathogenesis. In this study, we obtained the surgically resected bronchi and peripheral lung tissues from 31 IPF patients and 39 control subjects, and we sought to explore the morphologic characteristics of MCC in conducting airway by using immunostaining and scanning and transmission electron microscopy. In the submucosal regions of the bronchi, we found that the areas of mucus glands (MUC5B+) were significantly larger in IPF patients as compared with control subjects (p < 0.05). In the surface epithelium of three airway regions (bronchi, proximal bronchioles, and distal bronchioles), increased MUC5B and MUC5AC expression of secretory cells, decreased number of ciliated cells, and increased ciliary length were observed in IPF patients than control subjects (all p < 0.05). In addition, the mRNA expression levels of MUC5B were up-regulated in both the bronchi and peripheral lung of IPF patients than those of control subjects (p < 0.05), accompanied with 93.55% IPF subjects who had obvious MUC5B+ mucus plugs in alveolar regions. No MUC5B rs35705950 single-nucleotide polymorphism allele was detected in both IPF patients and control subjects. Our study shows that mucus hypersecretion and ciliary impairment in conducting airway are major causes of mucus plugs in alveolar regions and may be closely related to the alveolar injuries in IPF patients.

16.
Front Cell Dev Biol ; 8: 580026, 2020.
Article in English | MEDLINE | ID: mdl-33117807

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease of unknown etiology and high mortality. Current therapeutic strategies have limited efficacy and the prognosis remains poor. Based on the histological observations of IPF lung tissues and experimental studies using lung fibrosis animal models, it is gradually accepted that impaired epithelial regeneration after lung injury is a critical mechanism underlying the pathogenesis of pulmonary fibrosis. The central role of AEC2 in this process has been well-elucidated, while the contribution of other lung progenitor/stem cells is less discussed. Recently, increasing studies have identified several non-AEC2 epithelial progenitor/stem cells with great plasticity to transform into mature AECs and reconstitute alveolar epithelium after lung injury. However, why these cells do not function as alternate stem cells to regenerate alveolar epithelium in IPF is still unknown. In this review, we discuss the contribution of lung epithelial progenitor/stem cells in the aberrant alveolar regeneration, and provide a novel perspective on the mechanism of IPF pathogenesis, in which non-AEC2 progenitors may play an essential role.

17.
Dev Cell ; 54(4): 488-500.e5, 2020 08 24.
Article in English | MEDLINE | ID: mdl-32730755

ABSTRACT

In response to respiratory insults, airway submucosal glands secrete copious mucus strands to increase mucociliary clearance and protect the lung. However, in cystic fibrosis, stimulating submucosal glands has the opposite effect, disrupting mucociliary transport. In cystic fibrosis (CF) pigs, loss of cystic fibrosis transmembrane conductance regulator (CFTR) anion channels produced submucosal gland mucus that was abnormally acidic with an increased protein concentration. To test whether these variables alter mucus, we produced a microfluidic model of submucosal glands using mucus vesicles from banana slugs. Acidic pH and increased protein concentration decreased mucus gel volume and increased mucus strand elasticity and tensile strength. However, once mucus strands were formed, changing pH or protein concentration largely failed to alter the biophysical properties. Likewise, raising pH or apical perfusion did not improve clearance of mucus strands from CF airways. These findings reveal mechanisms responsible for impaired mucociliary transport in CF and have important implications for potential treatments.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/metabolism , Lung/metabolism , Respiratory Mucosa/metabolism , Animals , Biological Transport , Cystic Fibrosis/genetics , Cystic Fibrosis/pathology , Humans , Lung/pathology , Mucus/metabolism , Respiratory Mucosa/pathology , Serum Albumin, Bovine/pharmacology , Swine , Trachea/metabolism , Trachea/pathology
18.
Nature ; 567(7748): 405-408, 2019 03.
Article in English | MEDLINE | ID: mdl-30867598

ABSTRACT

Loss-of-function mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) compromise epithelial HCO3- and Cl- secretion, reduce airway surface liquid pH, and impair respiratory host defences in people with cystic fibrosis1-3. Here we report that apical addition of amphotericin B, a small molecule that forms unselective ion channels, restored HCO3- secretion and increased airway surface liquid pH in cultured airway epithelia from people with cystic fibrosis. These effects required the basolateral Na+, K+-ATPase, indicating that apical amphotericin B channels functionally interfaced with this driver of anion secretion. Amphotericin B also restored airway surface liquid pH, viscosity, and antibacterial activity in primary cultures of airway epithelia from people with cystic fibrosis caused by different mutations, including ones that do not yield CFTR, and increased airway surface liquid pH in CFTR-null pigs in vivo. Thus, unselective small-molecule ion channels can restore host defences in cystic fibrosis airway epithelia via a mechanism that is independent of CFTR and is therefore independent of genotype.


Subject(s)
Cystic Fibrosis/metabolism , Epithelium/metabolism , Ion Channels/metabolism , Respiratory Mucosa/metabolism , Respiratory System/metabolism , Amphotericin B/pharmacology , Animals , Bicarbonates/metabolism , Cells, Cultured , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/deficiency , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Epithelial Cells/cytology , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelium/drug effects , Female , Humans , Hydrogen-Ion Concentration , Male , Respiratory Mucosa/drug effects , Respiratory System/drug effects , Sodium-Potassium-Exchanging ATPase/metabolism , Swine
19.
Physiol Rep ; 6(2)2018 01.
Article in English | MEDLINE | ID: mdl-29380953

ABSTRACT

The airway-surface liquid pH (pHASL ) is slightly acidic relative to the plasma and becomes more acidic in airway diseases, leading to impaired host defense. CO2 in the large airways decreases during inspiration (0.04% CO2 ) and increases during expiration (5% CO2 ). Thus, we hypothesized that pHASL would fluctuate during the respiratory cycle. We measured pHASL on cultures of airway epithelia while changing apical CO2 concentrations. Changing apical CO2 produced only very slow pHASL changes, occurring in minutes, inconsistent with respiratory phases that occur in a few seconds. We hypothesized that pH changes were slow because airway-surface liquid has little carbonic anhydrase activity. To test this hypothesis, we applied the carbonic anhydrase inhibitor acetazolamide and found minimal effects on CO2 -induced pHASL changes. In contrast, adding carbonic anhydrase significantly increased the rate of change in pHASL . Using pH-dependent rates obtained from these experiments, we modeled the pHASL during respiration to further understand how pH changes with physiologic and pathophysiologic respiratory cycles. Modeled pHASL oscillations were small and affected by the respiration rate, but not the inspiratory:expiratory ratio. Modeled equilibrium pHASL was affected by the inspiratory:expiratory ratio, but not the respiration rate. The airway epithelium is the only tissue that is exposed to large and rapid CO2 fluctuations. We speculate that the airways may have evolved minimal carbonic anhydrase activity to mitigate large changes in the pHASL during breathing that could potentially affect pH-sensitive components of ASL.


Subject(s)
Carbonic Anhydrases/metabolism , Hydrogen-Ion Concentration , Respiration , Respiratory Mucosa/chemistry , Respiratory Mucosa/enzymology , Animals , Animals, Newborn , Swine
20.
Proc Natl Acad Sci U S A ; 115(6): 1370-1375, 2018 02 06.
Article in English | MEDLINE | ID: mdl-29358407

ABSTRACT

Differentiated airway epithelia produce sonic hedgehog (SHH), which is found in the thin layer of liquid covering the airway surface. Although previous studies showed that vertebrate HH signaling requires primary cilia, as airway epithelia mature, the cells lose primary cilia and produce hundreds of motile cilia. Thus, whether airway epithelia have apical receptors for SHH has remained unknown. We discovered that motile cilia on airway epithelial cells have HH signaling proteins, including patched and smoothened. These cilia also have proteins affecting cAMP-dependent signaling, including Gαi and adenylyl cyclase 5/6. Apical SHH decreases intracellular levels of cAMP, which reduces ciliary beat frequency and pH in airway surface liquid. These results suggest that apical SHH may mediate noncanonical HH signaling through motile cilia to dampen respiratory defenses at the contact point between the environment and the lung, perhaps counterbalancing processes that stimulate airway defenses.


Subject(s)
Bronchi/cytology , Epithelial Cells/metabolism , Hedgehog Proteins/metabolism , Trachea/cytology , Cells, Cultured , Cilia/metabolism , Cilia/physiology , Cyclic AMP/metabolism , Epithelial Cells/cytology , Humans , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Signal Transduction , Smoothened Receptor/genetics , Smoothened Receptor/metabolism , Zinc Finger Protein Gli2/genetics , Zinc Finger Protein Gli2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...